

January 26, 2005

Mr. Steve Riva U.S. Environmental Protection Agency Region 2 290 Broadway New York, NY 10007

Mr. Kevin Kispert New York State Department of Environmental Conservation Division of Air Resources 625 Broadway Albany, NY 12233-3255

Subject: Caithness Bellport LLC - Caithness Bellport Energy Center Prevention of Significant Deterioration (PSD) and New York State Part 201 Air Permit Application for Proposed 346 MW Combined Cycle Facility

Gentlemen:

Enclosed please find three (3) copies of the PSD/New York State Part 201 Air Permit Application that we are submitting on behalf of Caithness Bellport, LLC (Caithness Bellport) for a 346 MW combined cycle facility to be known as the "Caithness Bellport Energy Center". The Caithness Bellport Energy Center will be located in the Town of Brookhaven, Suffolk County, Long Island, New York. This application addresses the air quality analyses required by the New York State Department of Environmental Conservation (NYSDEC) and US Environmental Protection Agency (USEPA) for air permitting purposes. The Caithness Bellport Project will represent a new major Part 201 source, and is seeking a construction/operation State Facility Permit under 201-5 with this application, and will apply for a Title V operating permit under 201-6 within one year of commencing operation. With this joint application, Caithness Bellport is also seeking a PSD Permit to Construct from USEPA Region 2, which presently has PSD review authority for PSD major source projects in New York State. The application was prepared in accordance with guidance received from USEPA and NYSDEC at our September 14, 2004 pre-application meeting.

The Caithness Bellport Energy Center combined cycle generating unit will consist of one gas and oil-fired Siemens Westinghouse Power Corporation Frame 501F combustion turbine generator, a heat recovery steam generator equipped with natural gas-fired duct burners for supplementary firing and a single stream turbine generator with an air-cooled condenser. Combined cycle unit emissions will be controlled by an oxidation catalyst

Messrs. Riva and Kispert January 26, 2005 Page 2 of 2

and selective catalytic reduction and directed into a single 170-foot stack. Supporting auxiliary equipment includes a dual-fuel auxiliary boiler with low-NOx burners and flue gas recirculation, a forced-draft low-NO_x fuel gas dew point heater and an emergency diesel fire pump. The Project combined cycle unit will be designed to operate on a continuous basis, but may operate at partial loads between 75 to 100% when it is dispatched.

Should you have any questions regarding this PSD/State Facility Permit application, please do not hesitate to call David Shotts at 201.933.5541 ext. 112 or me at ext. 108.

Sincerely,

TRC/Environmental Co

Kevin J. Maher, AICP Project Manager

Leon Sedefian, NYSDEC cc: John Pavacic, NYSDEC Region 1 Ross Ain, Caithness Bellport, LLC Tim Prenger, Caithness Bellport, LLC Gail Conboy, Caithness Bellport, LLC Mike Milligan, LIPA Monique Brechter, LIPA Christine Fazio, Carter Ledyard Henry Kearny, AKRF Harry Davitian, Entek Power Steve Gordon, Beveridge & Diamond Michael Murphy, Beveridge & Diamond William Masincup, Siemens Westinghouse Power Corp. Jay Snyder, TRC Dave Shotts, TRC

Caithness Bellport Energy Center 346 MW Combined Cycle Facility PSD and Part 201 Air Permit Application

Prepared for: Caithness Bellport, LLC 565 Fifth Avenue, 29th Floor New York, NY 10017

Prepared by:

TRC Environmental Corporation 1200 Wall Street West, 2nd Floor Lyndhurst, NJ 07071

January 2005

TABLE OF CONTENTS

LIST OF ACRO	NYMS	ix
1.0 INTROD	DUCTION	1-1
1.1 Project	t Overview	1-1
1.2 Applic	cation Summary	
1.2.1 Fa	acility Emissions and Control Requirements	
1.2.1.1	Best Available Control Technology (BACT)	
1.2.1.2	Lowest Achievable Emission Rate (LAER)	
1.2.1.3	Maximum Achievable Control Technology	1-4
1.2.1.4	Other NYSDEC Requirements	1-4
1.2.2 A	ir Quality Impacts Analysis	1-5
1.2.2.1	Impact on Ambient Air Quality Standards and PSD Increments	1-5
1.2.2.2	Class I Area Impacts	1-5
1.2.2.3	Impacts to Soils, Vegetation, Growth, and Visibility	1-5
1.2.2.4	Environmental Justice	1-6
1.3 Conclu	isions	1-6
1.4 Applic	ation Forms and Supporting Data	1-6
1.5 Summ	ary of Proposed Permit Limits	1-7
1.6 Summ	ary of Potential Compliance Provisions	1-7
2.0 PROJEC	T DESCRIPTION	
2.1 Facility	y Conceptual Design	
2.1.1 C	ombustion Turbine Generator (CTG)	
2.1.2 H	leat Recovery Steam Generator (HRSG)	
2.1.3 D	buct Burner	
2.1.4 St	team Turbine Generator (STG)	
2.1.5 A	ir Cooled Condenser (ACC)	
2.1.6 C	ombustion Turbine/Duct Burner Air Pollution Control Systems	
2.1.6.1	DLN Combustor	
2.1.6.2	Selective Catalytic Reduction	
2.1.6.3	Oxidation Catalyst	
2.1.6.4	Process Controls	
2.1.7 A	uxiliary Boiler	
2.1.8 Fi	uel Gas Heater	
2.1.9 E	mergency Diesel Fire Pump	
2.1.10 E	xhaust Stack Enclosure	
2.1.11 Fi	uel Oil Storage Tank	
2.2 Fuel		
2.3 Facility	y Operating Modes	
2.4 Source	e Emission Parameters	
2.4.1 C	riteria Pollutant Emissions from the Combustion Turbine	

2 4 2	Other Dellester (Enclosience from the Complete Generation Teching	2.7
2.4.2	Detertial Annual Emissions from the Combustion Turbine	
2.4.3	Potential Annual Emissions from the Combustion Turbine/Duct Burne:	r 2-7
2.4.4	Potential Annual Emissions from the Auxiliary Boller	
2.4.5	Potential Annual Emissions from the Fuel Gas Heater	
2.4.6	Potential Annual Emissions from the Emergency Diesel Fire Pump	
2.4.7	Potential Annual Emissions from Miscellaneous Sources	2-8
3.0 APPL	ICABLE REQUIREMENTS AND REQUIRED ANALYSES	
3.1 Fed	leral New Source Performance Standards	3-1
3.1.1	40 CFR Part 60, Subpart A – Combustion Turbine, Duct Burner,	
	Auxiliary Boiler and Fuel Oil Storage Tank	3-1
3.1.2	40 CFR 60, Subpart GG – Combustion Turbine	
3.1.3	40 CFR 60, Subpart Da – Duct Burner	
3.1.4	40 CFR 60, Subpart Dc – Auxiliary Boiler	
3.1.5	40 CFR 60, Subpart Kb – Fuel Oil Storage Tank	
3.2 NY	S Department of Environmental Conservation Regulations and Policy	
3.3 Att	ainment Status and Compliance with Air Quality Standards	
3.4 Pre	vention of Significant Deterioration	3-7
3.4.1	Ambient Air Quality Monitoring	3-7
3.4.2	Impact Area Determination	
3.4.3	Additional Impact Analyses	
3.4.4	Impacts on Class I Areas	
3.4.5	Environmental Justice	
3.5 Nor	n-Attainment New Source Review Requirements	3-9
3.5.1	Emissions Offset Requirements	3-9
3.5.2	Emission Reduction Credit Requirements	
3.5.3	Availability and Certification of Emission Reduction Credits	
3.5.4	Compliance Status of Caithness Energy, LLC's New York Facilities	
3.5.5	Analysis of Alternatives	
3.5.5.	1 Project Background	
3.5.5.	2 Analysis of Alternatives Results	
3.5	5.2.1 Alternative Sites	
3.5	5.2.2 Environmental Considerations	
3.5.6	Public Need for the Project	
3.5.7	Benefits of the Proposed Facility	
3.6 NO	SIP Call (NO _x Budget Program) Requirements	
3.7 Fed	leral Acid Rain Regulations	
3.7.1	Monitoring Requirements	
3.7.2	Calculation of SO ₂ Allowances Required.	
3.7.3	Sources of Allowances	
3.7.4	Phase II Acid Rain Permit Application	
3.8 Ma	ximum Achievable Control Technology (MACT) Applicability	
3.9 Sec	tion 112(r) Applicability	3-22
5.5 500		

4.0 CONTROL TECHNOLOGY ANALYSIS	4-1
4.1 Overview	4-1
4.2 Applicability of Control Technology Requirements	4-1
4.2.1 PSD Pollutants Subject To BACT	
4.2.2 Non-Attainment Pollutants Subject To LAER	
4.2.3 Emission Units Subject to BACT or LAER Analysis	
4.3 Approach Used in BACT Analysis	
4.3.1 Identification of Technically Feasible Control Options	
4.3.2 Economic (Cost-Effectiveness) Analysis	4-4
4.3.3 Energy Impact Analysis	4-4
4.3.4 Environmental Impact Analysis	
4.3.5 BACT Proposal	
4.4 LAER/BACT Analysis for Nitrogen Oxides	
4.4.1 Review of NO _X RBLC Database	
4.4.1.1 Combined Cycle Combustion Turbine and Duct Burner	
4.4.1.2 Auxiliary Boiler	4-7
4.4.1.3 Fuel Gas Heater	4-7
4.4.1.4 Emergency Diesel Fire Pump	
4.4.2 Identification of NO _x Control Options and Technical Feasibility	
4.4.2.1 Combined Cycle Combustion Turbine and Duct Burner	
4.4.2.2 Auxiliary Boiler	
4.4.2.3 Fuel Gas Heater	
4.4.2.4 Emergency Diesel Fire Pump	
4.4.3 Determination of LAER for NO _x	4-17
4.4.3.1 Combined Cycle Combustion Turbine and Duct Burner	4-17
4.4.3.2 Auxiliary Boiler	
4.4.3.3 Fuel Gas Heater	
4.4.3.4 Emergency Diesel Fire Pump	
4.5 LAER Analysis for Volatile Organic Compounds	
4.5.1 Review of VOC RBLC Database	
4.5.1.1 Combined Cycle Combustion Turbine and Duct Burner	4-19
4.5.1.2 Auxiliary Boiler	
4.5.1.3 Fuel Gas Heater	
4.5.1.4 Emergency Diesel Fire Pump	
4.5.2 Identification of VOC Control Options and Technical Feasibility	
4.5.2.1 Combined Cycle Combustion Turbine and Duct Burner	
4.5.2.2 Auxiliary Boiler	
4.5.2.3 Fuel Gas Heater	
4.5.2.4 Emergency Diesel Fire Pump	
4.5.3 Determination of LAER for VOC	
4.5.3.1 Combined Cycle Combustion Turbine and Duct Burner	
4.5.3.2 Auxiliary Boiler	
4.5.3.3 Fuel Gas Heater	

Section

1501		4.00
4.5.3.4	Emergency Diesel Fire Pump	
4.6 BACI	TAnalysis for Carbon Monoxide	
4.6.1 F	Review of CO BACT Database	
4.6.1.1	Combined Cycle Combustion Turbine and Duct Burner	
4.6.1.2	Auxiliary Boiler	
4.6.1.3	Fuel Gas Heater	
4.6.1.4	Emergency Diesel Fire Pump	
4.6.2	dentification of CO Control Options and Technical Feasibility	
4.6.2.1	Combined Cycle Combustion Turbine and Duct Burner	
4.6.2.2	Auxiliary Boiler	
4.6.2.3	Fuel Gas Heater	
4.6.2.4	Emergency Diesel Fire Pump	
4.6.3 L	Determination of BACT for CO	
4.6.3.1	Combined Cycle Combustion Turbine and Duct Burner	
4.6.3.2	Auxiliary Boiler	
4.6.3.3	Fuel Gas Heater	
4.6.3.4	Emergency Diesel Fire Pump	
4.7 BACI	CAnalysis for PM and PM-10.	
4.7.1 F	Review of PM and PM-10 BACT Databases	
4.7.1.1	Combined Cycle Combustion Turbine and Duct Burner	
4.7.1.2	Auxiliary Boiler	
4.7.1.3	Fuel Gas Heater	
4.7.1.4	Emergency Diesel Fire Pump	
4.7.2	dentification of PM and PM-10 Control Options and Technical Feasibility	
4.7.2.1	Combustion Turbine and Duct Burner	
4.7.2.2	Auxiliary Boiler	
4.7.2.3	Fuel Gas Heater	
4.7.2.4	Emergency Diesel Fire Pump	
4.7.3 L	Determination of BACT for PM and PM-10	
4.7.3.1	Combined Cycle Combustion Turbine and Duct Burner	
4.7.3.2	Auxiliary Boiler	
4.7.3.3	Fuel Gas Heater	
4.7.3.4	Emergency Diesel Fire Pump	
4.8 BACI	Analysis for Sulfur Dioxide and Sulfuric Acid Mist	
4.8.1 F	Review of SO_2 and H_2SO_4 BACT Database	
4.8.1.1	Combined Cycle Combustion Turbine and Duct Burner	
4.8.1.2	Auxiliary Boiler	
4.8.1.3	Fuel Gas Heater	
4.8.1.4	Emergency Diesel Fire Pump	
4.8.2 I	dentification of SO_2 and H_2SO_4 Control Options and Technical Feasibility.	
4.8.2.1	Combined Cycle Combustion Turbine and Duct Burner	4-33
4.8.2.2	Auxiliary Boiler	4-33
4.8.2.3	Fuel Gas Heater	4-33

Page

	Page
	2000
Emergency Diesel Fire Pump	
Ultra Low Sulfur Fuel Oil	
Determination of BACT for SO ₂ and H ₂ SO ₄	
Combined Cycle Combustion Turbine and Duct Burner	
Auxiliary Boiler	
Fuel Gas Heater	
Emergency Diesel Fire Pump	
nonia Slip Emissions	
mary of Control Technology Proposals	
UALITY MODELING ANALYSIS	
duction and Summary	
leling Methodology	
ounding Area and Land Use	
lel Selection and Inputs	
Source Parameters and Emission Rates	
Combustion Turbine/HRSG	5-7

4.8.3.4 Emergency Diesel Fire Pump	
4.9 Ammonia Slip Emissions	
4.10 Summary of Control Technology Proposals	
	5 1
5.0 AIR QUALITY MODELING ANALYSIS	
5.1 Introduction and Summary	
5.2 Modeling Methodology	
5.3 Surrounding Area and Land Use	
5.4 Model Selection and Inputs	
5.4.1 Source Parameters and Emission Rates	
5.4.1.1 Combustion Turbine/HRSG	
5.4.1.2 Auxiliary Boiler	
5.4.1.3 Fuel Gas Heater	
5.4.1.4 Emergency Diesel Fire Pump	
5.4.2 Turbine Startups and Shutdowns	
5.4.3 Good Engineering Practice Stack Height Analysis	
5.4.4 Cavity Region Screening Analysis	
5.4.5 Meteorological Data	
5.4.6 Receptor Grid	
5.4.6.1 Basic Grid	
5.4.6.2 Maximum Impact Area Grid	
5.5 Modeling Results	
5.5.1 Load Analysis Results	
5.5.1.1 Combustion Turbine – Simple Terrain	
5.5.1.2 Combustion Turbine – Complex Terrain	
5.5.1.3 Auxiliary Boiler – Simple Terrain	
5.5.1.4 Auxiliary Boiler – Complex Terrain	
5.5.2 Significance Analysis Results	
5.5.3 Cavity Region Modeling Results	
5.5.4 Turbine Startup Modeling Results	
5.6 PSD Additional Impacts Analysis	
5.6.1 Impacts to Soils and Vegetation	
5.6.2 Impact on Visibility	
5.6.3 Class I Analyses	
5.6.4 Impact on Industrial, Commercial and Residential Growth	
5.7 Modeling Data Files	
5.8 References	

Section

4.8.2.4

4.8.2.5

4.8.3.1 4.8.3.2

4.8.3.3

4.8.3

6.0 ENV	VIRONMENTAL JUSTICE	5-1
6.1 P	Project Location	5-2
6.2 M	Iethodology	5-2
6.2.1	Delineate the Boundaries of the Community of Concern	5-2
6.2.2	Compare Demographics to a Reference Area	5-3
6.2.3	Determine Whether the Community is Either Minority or Low-Income	5-4
6.3 E	Evaluation of Caithness Bellport Energy Center Impacts in the Screening Area	5-4
6.4 B	Background Air Quality	6-5
6.5 A	Assessment of Air Quality Impacts in the Screening Area	6-6
6.5.1	SO ₂ Impacts Within the Screening Area	6-6
6.5.2	CO Impacts Within the Screening Area	5-7
6.5.3	PM-10 Impacts Within the Screening Area	6-7
6.5.4	NO ₂ Impacts Within the Screening Area	6-7
6.6 E	Evaluation of Toxic Release Inventory Facilities	6-7
6.7 P	Public Involvement	6-8
6.7.1	Public Participation Plan Overview	6-8
6.7.2	Public Outreach Meetings	-10
6.8 C	Conclusions	-11
6.9 R	eferences6-	-11
7.0 COI	NSTRUCTION RELATED ACTIVITIES	7-1

LIST OF TABLES

Table No.	Page
Table 1-1: Summary of Proposed Permit Limits Combustion Turbine and Duct Burner (Steady-State Operation)	1-9
Table 1-2: Summary of Proposed Permit Limits Combined Cycle Unit Startup	1 10
Table 1-3: Summary of Proposed Permit Limits Auviliary Boiler, Fuel Gas Heater and	1-10
Emergency Diesel Fire Pump	1-11
Table 3-1: National and New York Ambient Air Quality Standards, PSD Increments and	
Significant Impact Levels.	3-23
Table 3-2: PSD and Non-Attainment NSR Significant Emission Rates and Project Potential	~ ~ /
Emission Rates	3-24
Table 3-3: USEPA Significant Monitoring Concentrations	3-24
Table 3-4: Calculation of Offsets	3-23
Table 5-5: New York State Facilities Owned, Operated By or Allinated with	2 25
Calumess Energy, LLC in Support of Compliance Review	3-23
Table 4-1: Summary of Proposed BACT/LAFR – Combustion Turbine/Duct Burner	4-37
Table 4-2: Summary of Proposed BACT/LAER – Auxiliary Boiler	4-38
Table 4-3: Summary of Proposed BACT/LAER – Fuel Gas Heater	4-38
Table 4-4: Summary of Proposed BACT/LAER – Emergency Diesel Fire Pump	4-38
Table 5-1: Combustion Turbine Exhaust Parameters	5-28
Table 5-2: Combustion Turbine Emission Rates	5-29
Table 5-3: Auxiliary Boiler Stack Parameters and Emission Rates	5-30
Table 5-4: Stack Parameters and Emission Rates for the Fuel Gas Heater and	
Emergency Diesel Fire Pump	5-31
Table 5-5: Combustion Turbine Startup Stack Parameters	5-32
Table 5-6: GEP Stack Height Analysis	5-33
Table 5-7: BPIP Calculated Direction Dependent Building Downwash Parameters	5-34
Table 5-8: Cavity Region Screening Analysis	5-55 5-26
Table 5-10: Distillate Fuel Oil-fired Combustion Turbine Simple Terrain Load Analysis Results	5-50
Analysis Results	5-37
Table 5-11: Combustion Turbine Complex Terrain Load Analysis Results	5-38
Table 5-12: Natural Gas-fired Auxiliary Boiler Simple Terrain Load Analysis Results	5-39
Table 5-13: Distillate Fuel Oil-fired Auxiliary Boiler Simple Terrain Load	0 07
Analysis Results	5-40
Table 5-15: Facility Simple Terrain Analysis Results – Facility Scenario 1	5-42
Table 5-18: Facility Simple Terrain Analysis Results – Facility Scenario 4	5-45
Table 5-19: Facility Complex Terrain Analysis Results	5-46
Table 5-20: Facility Startup Analysis Results – Without Auxiliary Boiler	5-47
Table 5-21: Facility Startup Analysis Results – With Auxiliary Boiler	5-48

LIST OF TABLES

<u>Table No.</u>	Page Page
Table 5-22: Comparison of Maximum Predicted Concentrations of Pollutants to	
Vegetation Screening Concentrations	
Table 5-23: VISCREEN Maximum Surrounding Area Visual Impacts	
Table 6-1: Minority Data by Census Tract	
Table 6-3: Background Concentrations of Criteria Pollutants	6-14
Table 6-4: Caithness Bellport Energy Center – Maximum Modeled Concentrations	

LIST OF FIGURES

Figure No.

Figure 2-1: Site Location Map	
Figure 2-2a: Overall Alignment Plan	
Figure 2-2b: General Arrangement Plan	
Figure 2-2c: Elevation Drawing	2-12
Figure 5-1: Land Use Analysis	
Figure 5-2: Caithness Bellport Energy Center – Cavity Region Analysis	
Figure 5-3: Caithness Bellport Energy Center - Modeling Receptor Grid (Near Grid)	5-53
Figure 5-4: Caithness Bellport Energy Center – Modeling Receptor Grid (Full Grid)	5-54
Figure 6-1: Census Blocks and Block Group Boundaries	6-16
Figure 6-2: SO ₂ 3-Hour Total Concentrations	6-17
Figure 6-3: SO ₂ 24-Hour Total Concentrations	
Figure 6-4: Annual Total SO ₂ Concentrations	
Figure 6-5: CO 1-Hour Total Concentrations	
Figure 6-6: CO 8-Hour Total Concentrations	
Figure 6-7: PM-10 24-Hour Total Concentrations	
Figure 6-8: Annual Total PM-10 Concentrations	
Figure 6-9: Annual Total NO ₂ Concentrations	

Page 1

LIST OF APPENDICES

- Appendix A: NYSDEC Permit Application Forms
- Appendix B: Emission Calculations
- Appendix C: Vendor Data
- Appendix D: Agency Correspondence
- Appendix E: Acid Rain and NO_x Budget Permit Application
- Appendix F: RACT/BACT/LAER Clearinghouse and Recent Air Permit Search
- Appendix G: Control Cost Analyses
- Appendix H: Siemens Westinghouse Ammonia Slip Document
- Appendix I: Combustion Turbine Startup Modeling Emissions
- Appendix J: Modeling Input & Output Files
- Appendix K: Combustion Turbine and Auxiliary Boiler Operating Load Simple Terrain Modeling Analyses
- Appendix L: Complex Terrain Modeling Analyses

APPENDIX C

VENDOR DATA

Caithness - Bellport Energy Center

ESTIMATED W501F Gas Turbine Performance - Upgrade Combined Cycle / Dry Low NOx Combusto

AeroPac II 2-102x196 / 0.90 Power Facto

SITE CONDITIONS:	CASE 1	CASE 2	CASE 3	CASE 4	CASE 5	CASE 6	CASE 7	CASE 8	CASE 9	CASE 10	CASE 1 + DB	CASE 4 + DB	CASE 7 + DB	CASE 8 + DB
FUEL TYPE	Natural Gas													
	BASE	90.0%	75.0%	BASE	90.0%	75.0%	BASE	BASE	90.0%	75.0%	BASE	BASE	BASE	BASE
	20,438	20,438	20,438	20,438	20,438	20,438	20,438	20,438	20,438	20,438	20,438	20,438	20,438	20,438
	22,080	22,685	22,685	22,085	22,685	22,085	22,080	22,085	22,085	22,085	22,085	22,085	22,080	22,085
AMBIENT DRY BUILD TEMPERATURE °F				51.0	51.0	51.0	100.0	100.0	100.0	100.0		51.0	100.0	100.0
AMBIENT RELATIVE HUMIDITY. %	66%	66%	66%	60%	60%	60%	45%	45%	45%	45%	66%	60%	45%	45%
BAROMETRIC PRESSURE, psia	14.643	14.643	14.643	14.643	14.643	14.643	14.643	14.643	14.643	14.643	14.643	14.643	14.643	14.643
GAS TURBINE PERFORMANCE:														
FUEL FLOW, lbm/hr - GT Only	97,890	89,740	78,300	88,110	80,700	70,590	80,410	76,270	69,910	61,440	97,890	88,110	80,410	76,270
FUEL FLOW, Ibm/hr - Duct Burners	0	0	0	0	0	0	0	0	0	0	21,777	21,777	21,777	21,777
DUCT BURNER STATUS/MAX. HEAT INPUT (MMBtu/hr, HHV)	OFF	494	494	494	494									
STACK EXHAUST TEMPERATURE, °F	190	190	180	185	185	180	195	195	195	190	175	175	185	185
STACK EXHAUST FLOW, lbm/hr - GT plus Duct Burners	4,398,394	4,094,507	3,451,126	4,052,023	3,768,300	3,181,541	3,690,590	3,550,159	3,342,486	2,893,462	4,420,170	4,073,800	3,712,367	3,571,936
EXHAUST GAS COMPOSITION (BY % VOL):														
OXYGEN	12.61	12.74	12.45	12.68	12.80	12.52	12.19	12.40	12.61	12.49	10.85	10.78	10.13	10.25
CARBON DIOXIDE	3.82	3.77	3.90	3.73	3.67	3.81	3.70	3.66	3.56	3.62	4.63	4.60	4.65	4.65
WATER	7.56	7.44	7.70	8.02	7.91	8.17	10.61	9.97	9.79	9.90	9.14	9.73	12.44	11.88
NITROGEN	75.11	75.16	75.06	74.68	74.72	74.62	72.63	73.09	73.17	73.12	74.49	74.01	71.93	72.36
	0.90	0.90	0.90	0.89	0.89	0.89	0.87	0.87	0.87	0.87	0.89	0.88	0.86	0.86
MOLECULAR WEIGHT	28.48	28.49	28.47	28.42	28.43	28.41	28.13	28.20	28.21	28.20	28.38	28.31	28.02	28.08
NET EXHAUST STACK EMISSIONS: Based on USEPA test met	hods													
NO _x , ppmvd @ 15% O ₂	2	2	2	2	2	2	2	2	2	2	2	2	2	2
NO_X , lbm/hr as NO_2	16.7	15.3	13.4	15.0	13.8	12.1	13.7	13.0	11.9	10.5	20.4	18.7	17.4	16.7
NO _x , lbm/MMBtu	0.0076	0.0076	0.0076	0.0075	0.0076	0.0076	0.0076	0.0076	0.0075	0.0076	0.0076	0.0075	0.0075	0.0075
NH ₃ , ppmvd @ 15% O ₂	5	5	5	5	5	5	5	5	5	5	5	5	5	5
NH ₃ , lbm/hr as NO ₂	15.5	14.2	12.4	13.9	12.7	11.2	12.7	12.1	11.1	9.7	18.9	17.4	16.1	15.5
CO, ppmvd @ 15% O ₂	2	2	2	2	2	2	2	2	2	2	2	2	2	2
CO, lbm/hr	10.2	9.3	8.2	9.2	8.4	7.4	8.4	7.9	7.3	6.4	12.3	11.4	10.6	10.2
CO, lbm/MMBtu	0.0046	0.0046	0.0047	0.0046	0.0046	0.0047	0.0046	0.0046	0.0046	0.0046	0.0046	0.0046	0.0046	0.0046
VOC, ppmvd @ 15% O ₂ as CH ₄	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.7	1.7	1.7	1.7
VOC, lbm/hr as CH_4	3.5	3.2	2.8	3.2	2.9	2.6	2.9	2.8	2.5	2.2	6.1	5.6	5.2	5.0
VOC, lbm/MMBtu as CH ₄	0.0016	0.0016	0.0016	0.0016	0.0016	0.0017	0.0016	0.0017	0.0016	0.0016	0.0023	0.0023	0.0023	0.0023
SO ₂ , lbm/hr	2.4	2.2	1.9	2.1	2.0	1.7	2.0	1.9	1.7	1.5	2.9	2.7	2.5	2.4
SO ₂ , lbm/MMBtu	0.0011	0.0011	0.0011	0.0011	0.0011	0.0011	0.0011	0.0011	0.0011	0.0011	0.0011	0.0011	0.0011	0.0011
PARTICULATES, lbm/hr	11.7	10.9	9.2	10.7	10.0	8.5	9.6	9.3	8.7	7.6	17.0	16.1	15.0	14.6
PARTICULATES, lbm/MMBtu	0.0053	0.0054	0.0052	0.0054	0.0055	0.0053	0.0053	0.0054	0.0055	0.0055	0.0063	0.0065	0.0065	0.0066
H ₂ SO ₄ , lbm/hr	0.9	0.8	0.7	0.8	0.7	0.6	0.7	0.7	0.6	0.6	1.1	1.0	0.9	0.9

NOTES:

- All data is ESTIMATED and not guaranteed.

- Performance based on new and clean condition.

- Emission flowrates are calculated based on the maximum achievable exhaust flow. For further details on flowrate contact SWPC.

- NO_x emissions based on the use of an SCR.

- CO and VOC emissions based on the use of an oxidation catalyst.

- VOC consist of total hydrocarbons excluding methane and ethane and are expressed in terms of methane (CH 4).

- Particulates are per US EPA Method 201A/202 (front and back half) and include H 2SO4 and (NH4)2SO4.

- H₂SO₄ emissions are a subset of the total Particulate emissions (i.e., NOT added to particulates).

- Emission estimates in units of Ibm/MMBtu are based on the natural gas higher heating value (HHV).

- Gas fuel composition is 95.5219% CH4, 1.7391% C2H6, 0.1674% C3H8, 0.0193% iC4H10, 0.00313% nC4H10, 0.0057% iC5H12, 0.0037% nC5H12, 0.0046% nC6H14, 1.889% N2, 0.617% CO2 and 0.35 grains S/100 scf.

- Gas fuel must be in compliance with the Siemens Westinghouse Gas Fuel Spec (21T0306 Rev.11).

- Dry Low NOx combustor utilizing a gas fuel with an ethane content >5% vol. may produce a visible exhaust plume.

- Average temperature of the gas fuel is 266 °F. Sensible heat of the fuel is not included in the fuel heating values, heat input, or heat rate.

- IGV schedule may be adjusted during commissioning. Part load performance will be adjusted accordingly.

- Part load is achieved by modulating the IGVs and is based on percentage unrestricted power output.

- Emissions exclude ambient air contributions.

- Please be advised that the information contained in this transmittal has been prepared and is being transmitted per customer request specifically for information purposes only. Such information is not intended to be used for evaluation of plant design and/or performance relative to contractual commitments. Data included in any permit application or Environmental Impact Statement are strictly the customer's responsibility. SWPC is available to review permit application data upon request.

Proprietary Information

Based on CTT-2393C Rev. 4c November 22, 2004

Caithness - Bellport Energy Center

ESTIMATED W501F Gas Turbine Performance - Upgrade Combined Cycle / Dry Low NOx Combustor

AeroPac II 2-102x196 / 0.90 Power Factor

SITE CONDITIONS:	CASE 1	CASE 2	CASE 3	CASE 4	CASE 5	CASE 6	CASE 7	CASE 8	CASE 9	CASE 10 C	ASE 1 + DB C	ASE 4 + DB CA
FUEL TYPE	No. 2 Dist	No. 2 Dist	No. 2 Dist	No. 2 Dist	No. 2 Dist	No. 2 Dist	No. 2 Dist	No. 2 Dist				
LOAD LEVEL	BASE	90.0%	75.0%	BASE	90.0%	75.0%	BASE	BASE	90.0%	75.0%	BASE	BASE
NET FUEL HEATING VALUE, Btu/lbm (LHV)	18,450	18,450	18,450	18,450	18,450	18,450	18,450	18,450	18,450	18,450	18,450	18,450
	19,680	19,680	19,680	19,680	19,680	19,680	19,680	19,680	19,680	19,680	19,680	19,680
	OFF	OFF	OFF		0FF 51.0	0FF 51.0	85% 100.0		100 0		OFF	0FF 51.0
AMBIENT RELATIVE HUMIDITY %	66%	66%	0.0 66%	60%	60%	60%	45%	45%	45%	45%	66%	60%
BAROMETRIC PRESSURE, psia	14.643	14.643	14.643	14.643	14.643	14.643	14.643	14.643	14.643	14.643	14.643	14.643
INJECTION FLUID	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
INJECTION RATIO	0.4	0.4	0.3	0.4	0.4	0.3	0.4	0.4	0.4	0.3	0.4	0.4
GAS TURBINE PERFORMANCE:												
FUEL FLOW, lbm/hr - GT Only	107,970	98,420	84,170	97,050	88,550	75,890	88,490	83,900	76,790	66,360	107,970	97,050
FUEL FLOW, lbm/hr - Duct Burners (natural gas)	0	0	0	0	0	0	0	0	0	0	16,266	16,266
DUCT BURNER STATUS/MAX. HEAT INPUT (MMBtu/hr, HHV)	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	369	369
	43,190	39,370	25,250	38,820	35,420	22,770	35,400	33,560	30,720	19,910	43,190	38,820
STACK EXHAUST FLOWLIDD/br	290	290	290	285	285	285	290	290	290	290	280	275
STACK EXHAUST FLOW, IDII/III	4,451,512	4,410,202	3,907,730	4,099,000	4,070,012	3,004,490	3,734,004	3,391,401	3,309,170	3,270,372	4,407,770	4,115,946
EXHAUST GAS COMPOSITION (BY % VOL):	10.74	12 /1	12.06	10.00	12.46	10 07	10.04	12.54	12.16	12.62	11 50	11 57
	5.05	13.41	13.00	12.02	13.40	13.07	12.34	12.04	13.10	13.02	5 79	5.72
WATER	6.32	5.81	5.18	6.80	6.32	5.73	9.39	8.77	8.31	7.70	7.00	7.54
NITROGEN	74.99	75.24	75.64	74.56	74.80	75.18	72.53	72.99	73.21	73.60	74.73	74.28
ARGON	0.90	0.90	0.90	0.89	0.89	0.90	0.87	0.87	0.88	0.88	0.89	0.89
MOLECULAR WEIGHT	28.81	28.82	28.86	28.74	28.75	28.79	28.45	28.51	28.52	28.56	28.81	28.74
NET EXHAUST STACK EMISSIONS: Based on USEPA test method	ls											
NO _X , ppmvd @ 15% O ₂	6	6	6	6	6	6	6	6	6	6	8	8
NO _X , lbm/hr as NO ₂	51.0	46.5	39.7	45.8	41.8	35.8	41.8	39.7	36.3	31.3	78.3	71.4
NO_{X} , lbm/MMBtu as NO_{2}	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.025	0.025	0.024	0.032	0.032
NH ₃ , ppmvd @ 15% O ₂	5	5	5	5	5	5	5	5	5	5	5	5
NH ₃ , lbm/hr as NO ₂	15.8	14.4	12.3	14.2	12.9	11.1	12.9	12.3	11.2	9.7	18.1	16.6
CO, ppmvd @ 15% O ₂	2	2	4	2	2	4	2	2	2	4	4	4
CO, lbm/hr	10.4	9.4	16.2	9.3	8.5	14.6	8.5	8.1	7.4	12.8	23.9	21.8
CO, lbm/MMBtu	0.005	0.005	0.010	0.005	0.005	0.010	0.005	0.005	0.005	0.010	0.010	0.010
VOC, ppmvd @ 15% O ₂ as CH ₄	6	6	6	6	6	6	6	6	6	6	8	8
VOC, lbm/hr as CH_4	17.8	16.2	13.9	16.0	14.6	12.5	14.6	13.9	12.7	11.0	27.3	24.9
VOC, lbm/MMBtu as CH ₄	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.011	0.011
SO ₂ , lbm/hr	88.9	81.0	69.3	79.9	72.9	62.5	72.9	69.1	63.2	54.7	89.3	80.3
SO ₂ , Ibm/MMBtu	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.036	0.036
PARTICULATES, lbm/hr	106.3	109.4	110.0	96.8	93.3	100.3	87.2	83.7	80.8	88.1	110.3	100.8
PARTICULATES, lbm/MMBtu	0.050	0.057	0.067	0.051	0.054	0.068	0.050	0.051	0.054	0.068	0.045	0.045
H ₂ SO ₄ , lbm/hr	31.8	29.0	24.8	28.6	26.1	22.4	26.1	24.7	22.6	19.6	31.9	28.7

NOTES:

- All data is ESTIMATED and not guaranteed.

- Performance based on new and clean condition.

- Emission flowrates are calculated based on the maximum achievable exhaust flow. For further details on flowrate contact SWPC.

- NO_x emissions based on the use of an SCR.

- CO and VOC emissions based on the use of an oxidation catalyst.

- VOC consist of total hydrocarbons excluding methane and ethane and are expressed in terms of methane (CH₄).

- Particulates are per US EPA Method 201A/202 (front and back half) and include H₂SO₄ and (NH₄)₂SO₄.

- The H₂SO₄ emissions estimates above are a subset of the total Particulate emissions estimates above (i.e., do NOT add these to the particulate emissions).

- Emission estimates in units of lbm/MMBtu are based on the natural gas higher heating value (HHV).

- Particulates for oil fuel are based on specific gravity and may vary depending on fuel.

- Fuel oil composition is 86.434% C, 13.5% H, 0.04% S, 0.015% FBN, and 0.001% ash.

- Liquid fuel must be in compliance with the Siemens Westinghouse Liquid Fuel Spec (21T4424 Rev.7).

- Injection ratios may be adjusted during plant commissioning to meet emissions. Performance will be adjusted to the actual injection rate.

- IGV schedule may be adjusted during commissioning. Part load performance will be adjusted accordingly.

- Part load is achieved by modulating the IGVs and is based on percentage unrestricted power output.

- Emissions exclude ambient air contributions.

- Please be advised that the information contained in this transmittal has been prepared and is being transmitted per customer request specifically for information purposes only. Such information is not intended to be used for evaluation of plant design and/or performance relative to contractual commitments. Data included in any permit application or Environmental Impact Statement are strictly the customer's responsibility. SWPC is available to review permit application data upon request.

Based on CTT-2393C Rev. 4d January 20, 2005

ASE 7 + DB	CASE 8 + DB
No. 2 Dist	No. 2 Dist
BASE	BASE
18,450	18,450
19,680	19,680
85%	OFF
100.0	100.0
45%	45%
14.643	14.643
Water	Water
0.4	0.4
88,490	83,900
16,266	16,266
369	369
35,400	33,560
280	280
3,750,330	3,607,667
10.98	11.14
5.75	5.72
10.18	9.59
72.23	72.68
0.86	0.87
28.45	28.52
8	8
66.0	63.1
0.032	0.032
5	5
15.3	14.6
4	4
20.1	19.2
0.010	0.010
8	8
23.1	22.1
0.011	0.011
73.3 0.035	69.5 0.035 87 7
91.2 0.044 26.2	0.044 24.8

Siemens Westinghouse Power Corporation

A Siemens Company

Caithness - Bellport Energy Center - Total Estimated Startup and Shutdown Emissions W501FD Upgrade in Combined Cycle Operation on Natural Gas - No Aux. Boiler - With Stack Damper - Rev. 03

	Total Emissions (in pounds) @ 0 °F						
Mode	Ignition to Gas Turbine Base Load						
	NO _X	CO	VOC	PM			
"Cold" Startup	410	2,354	862	77			
"Warm" Startup	384	2,346	857	56			
"Hot" Startup	107	739	167	26			
Shutdown	64	423	92	12			

	Total Emissions (in pounds) @ 51 °F						
Mode	Ignition to Gas Turbine Base Load						
	NO _X	CO	VOC	PM			
"Cold" Startup	375	2,164	790	75			
"Warm" Startup	351	2,157	785	54			
"Hot" Startup	98	685	153	26			
Shutdown	59	393	84	12			

General Notes

- 1.) All data is ESTIMATED, NOT guaranteed and is for ONE unit (GT and HRSG).
- 2.) SCR efficiency is based on the SCR and ammonia vaporization system being in service and properly operating at design temperatures.
- 3.) VOC consist of total hydrocarbons excluding methane and ethane and is expressed in terms of methane (CH₄).
- 4.) Particulate (PM) emissions are based on USEPA Methods 5/202 and assume a max. fuel sulfur content of 0.35 gr S/100 scf.
- 5.) Gas fuel must be in compliance with the SWPC Fuel Specifications.
- 6.) Emissions are at the HRSG exhaust stack outlet and exclude ambient air contributions.
- 7.) Please be advised that the information contained in this transmittal has been prepared and is being transmitted per customer request specifically for information purposes only. Such information is not intended to be used for evaluation of plant design and/or performance relative to contractual commitments. Data included in any permit application or Environmental Impact Statement is strictly the customer's responsibility. SWPC is available to review permit application data upon request.

Startup / Shutdown Emissions Notes

- 1.) "Cold" Startup emissions estimates are based on being shutdown ~ 5 days or longer with a Steam HP/IP metal temp. of ~ 122 °F and assumes it takes ~ 400 minutes to reach GT Base load.
- 2.) "Warm" Startup emissions estimates are based on being shutdown ~ 48 hours with a Steam Turbine HP/IP metal temp. of ~ 320/428 °F and assumes it takes ~ 275 minutes to reach GT Base load.
- 3.) "Hot" Startup emissions estimates are based on being shutdown ~ 12 hours with a Steam Turbine HP/IP metal temp. of ~ 662 °F and assumes it takes ~ 145 minutes to reach GT Base load.
- 4.) Shutdown emissions based on the following times: 12 minutes from 100% Base to 70% load; 18-minute hold at 70% load; 28 minutes from 70% to minimum load; and a 5-minute hold at minimum load (FSNL) prior to fuel cut-off.
- 5.) Startup emissions estimates are based on a maximum of approximately 208 "Hot", 48 "Warm" and 4 "Cold" startups per year (and the subsequent 260 shutdowns per year). Any change in this value could affect the startup ramp rate and hold times and hence the startup emissions.
- 6.) Startup/Shutdown times are subject to change depending on commercial terms and conditions.
- ESTIMATED NO_X emissions assume 92% SCR efficiency from ≥ 60% to Base load and 60% SCR efficiency from ≥ 50% to 60% load.
- 8.) ESTIMATED CO emissions assume 90% oxidation catalyst efficiency from > 25% to Base load, 80% efficiency from ≥ 20 to 25% load and 60% efficiency from ≥ 10 to 20% load.
- 9.) ESTIMATED VOC emissions assume 50% oxidation catalyst efficiency from ≥ 30% to Base load, 40% efficiency from > 25 to 30% load and 10% efficiency from ≥ 20 to 25% load.
- 10.) Emissions mass flow rates are based on ambient temperatures of 0 °F and 51 °F as noted above and will be higher at lower ambient temperatures.
- 11.) Air Cooled Condenser is ready for operation and condensate receiver tank is filled prior to GT startup.
- 12.) HRSG is filled and ready for operation prior to GT startup.
- 13.) Steam chemistry adequate for ST operation (no waiting time included).
- 14.) Assumes SWPC standard BOP water/steam system design and SWPC steam piping warm up concept.
- 15.) Major equipment items (GT/HRSG/ST) are operated at their startup ramp limits with no abnormal holds or transients.
- 16.) BOP/Auxiliary equipment operation does not extend startup or shutdown.
- 17.) Condenser Hogging: mechanical vacuum pumps; Condenser Holding: Steam Jet Air Ejectors
- 18.) NO auxiliary boiler.
- 19.) Stack damper to aid HRSG heat retention during shutdowns.
- 20.) Operator actions do not extend startup or shutdown.
- 21.) It is assumed that there is no restriction from the interconnected utility for loading the gas turbine from synchronization to 100% load within the time considered for the startups.

Siemens Westinghouse Power Corporation

A Siemens Company

Caithness - Bellport Energy Center - Total Estimated Startup and Shutdown Emissions W501FD Upgrade in Combined Cycle Operation on No. 2 Fuel Oil - No Aux. Boiler - With Stack Damper - Rev. 03

	Total Emissions (in pounds) @ 0 °F						
Mode	Ignition to Gas Turbine Base Load						
	NO _X	CO	VOC	PM			
"Cold" Startup	874	2,890	975	745			
"Warm" Startup	832	2,852	953	497			
"Hot" Startup	213	1,169	227	266			
Shutdown	120	654	125	113			

	Total Emissions (in pounds) @ 51 °F						
Mode	Ignition to Gas Turbine Base Load						
	NO _X	CO	VOC	PM			
"Cold" Startup	799	2,661	894	684			
"Warm" Startup	761	2,627	874	458			
"Hot" Startup	195	1,087	209	243			
Shutdown	110	608	115	104			

General Notes

- 1.) All data is ESTIMATED, NOT guaranteed and is for ONE unit (GT and HRSG).
- 2.) SCR efficiency is based on the SCR and ammonia vaporization system being in service and properly operating at design temperatures.
- 3.) VOC consist of total hydrocarbons excluding methane and ethane and is expressed in terms of methane (CH₄).
- 4.) Particulate (PM) emissions are based on USEPA Methods 5/202 and assume a max. fuel sulfur content of 0.35 gr S/100 scf.
- 5.) Gas fuel must be in compliance with the SWPC Fuel Specifications.
- 6.) Emissions are at the HRSG exhaust stack outlet and exclude ambient air contributions.
- 7.) Please be advised that the information contained in this transmittal has been prepared and is being transmitted per customer request specifically for information purposes only. Such information is not intended to be used for evaluation of plant design and/or performance relative to contractual commitments. Data included in any permit application or Environmental Impact Statement is strictly the customer's responsibility. SWPC is available to review permit application data upon request.

Startup / Shutdown Emissions Notes

- 1.) "Cold" Startup emissions estimates are based on being shutdown ~ 5 days or longer with a Steam HP/IP metal temp. of ~ 122 °F and assumes it takes ~ 400 minutes to reach GT Base load.
- 2.) "Warm" Startup emissions estimates are based on being shutdown ~ 48 hours with a Steam Turbine HP/IP metal temp. of ~ 320/428 °F and assumes it takes ~ 275 minutes to reach GT Base load.
- 3.) "Hot" Startup emissions estimates are based on being shutdown ~ 12 hours with a Steam Turbine HP/IP metal temp. of ~ 662 °F and assumes it takes ~ 145 minutes to reach GT Base load.
- 4.) Shutdown emissions based on the following times: 12 minutes from 100% Base to 70% load; 18-minute hold at 70% load; 28 minutes from 70% to minimum load; and a 5-minute hold at minimum load (FSNL) prior to fuel cut-off.
- 5.) Startup emissions estimates are based on a maximum of approximately 208 "Hot", 48 "Warm" and 4 "Cold" startups per year (and the subsequent 260 shutdowns per year). Any change in this value could affect the startup ramp rate and hold times and hence the startup emissions.
- 6.) Startup/Shutdown times are subject to change depending on commercial terms and conditions.
- ESTIMATED NO_x emissions assume 92% SCR efficiency from ≥ 60% to Base load and 60% SCR efficiency from ≥ 50% to 60% load.
- 8.) ESTIMATED CO emissions assume 90% oxidation catalyst efficiency from > 25% to Base load, 80% efficiency from ≥ 20 to 25% load and 60% efficiency from ≥ 10 to 20% load.
- 9.) ESTIMATED VOC emissions assume 50% oxidation catalyst efficiency from ≥ 30% to Base load, 40% efficiency from > 25 to 30% load and 10% efficiency from ≥ 20 to 25% load.
- 10.) Emissions mass flow rates are based on ambient temperatures of 0 °F and 51 °F as noted above and will be higher at lower ambient temperatures.
- 11.) Air Cooled Condenser is ready for operation and condensate receiver tank is filled prior to GT startup.
- 12.) HRSG is filled and ready for operation prior to GT startup.
- 13.) Steam chemistry adequate for ST operation (no waiting time included).
- 14.) Assumes SWPC standard BOP water/steam system design and SWPC steam piping warm up concept.
- 15.) Major equipment items (GT/HRSG/ST) are operated at their startup ramp limits with no abnormal holds or transients.
- 16.) BOP/Auxiliary equipment operation does not extend startup or shutdown.
- 17.) Condenser Hogging: mechanical vacuum pumps; Condenser Holding: Steam Jet Air Ejectors
- 18.) NO auxiliary boiler.
- 19.) Stack damper to aid HRSG heat retention during shutdowns.
- 20.) Operator actions do not extend startup or shutdown.
- 21.) It is assumed that there is no restriction from the interconnected utility for loading the gas turbine from synchronization to 100% load within the time considered for the startups.

Siemens Westinghouse Power Corporation

A Siemens Company

Caithness - Bellport Energy Center - Total Estimated Startup and Shutdown Emissions W501FD Upgrade in Combined Cycle Operation on Natural Gas - With Aux. Boiler - With Stack Damper - Rev. 01

	Total Emissions (in pounds) @ 0 °F						
Mode	Ignition to Gas Turbine Base Load						
	NO _X	CO	VOC	PM			
"Cold" Startup	162	901	238	52			
"Warm" Startup	136	893	233	31			
"Hot" Startup	105	738	166	25			
Shutdown	64	423	92	12			

	Total Emissions (in pounds) @ 51 °F						
Mode	Ignition to Gas Turbine Base Load						
	NO _X	CO	VOC	PM			
"Cold" Startup	147	833	219	51			
"Warm" Startup	125	826	214	30			
"Hot" Startup	96	685	153	24			
Shutdown	59	393	84	12			

General Notes

- 1.) All data is ESTIMATED, NOT guaranteed and is for ONE unit (GT and HRSG).
- 2.) SCR efficiency is based on the SCR and ammonia vaporization system being in service and properly operating at design temperatures.
- 3.) VOC consist of total hydrocarbons excluding methane and ethane and is expressed in terms of methane (CH₄).
- 4.) Particulate (PM) emissions are based on USEPA Methods 5/202 and assume a max. fuel sulfur content of 0.35 gr S/100 scf.
- 5.) Gas fuel must be in compliance with the SWPC Fuel Specifications.
- 6.) Emissions are at the HRSG exhaust stack outlet and exclude ambient air contributions.
- 7.) Please be advised that the information contained in this transmittal has been prepared and is being transmitted per customer request specifically for information purposes only. Such information is not intended to be used for evaluation of plant design and/or performance relative to contractual commitments. Data included in any permit application or Environmental Impact Statement is strictly the customer's responsibility. SWPC is available to review permit application data upon request.

Startup / Shutdown Emissions Notes

- 1.) "Cold" Startup emissions estimates are based on being shutdown ~ 7 days or longer with a Steam HP/IP metal temp. of ~ 122 °F and assumes it takes ~ 300 minutes to reach GT Base load.
- "Warm" Startup emissions estimates are based on being shutdown ~ 48 hours with a Steam Turbine HP/IP metal temp. of ~ 320/428 °F and assumes it takes ~ 170 minutes to reach GT Base load.
- 3.) "Hot" Startup emissions estimates are based on being shutdown ~ 12 hours with a Steam Turbine HP/IP metal temp. of ~ 662 °F and assumes it takes ~ 135 minutes to reach GT Base load.
- 4.) Shutdown emissions based on the following times: 12 minutes from 100% Base to 70% load; 18-minute hold at 70% load; 28 minutes from 70% to minimum load; and a 5-minute hold at minimum load (FSNL) prior to fuel cut-off.
- 5.) Startup emissions estimates are based on a maximum of approximately 208 "Hot", 48 "Warm" and 4 "Cold" startups per year (and the subsequent 260 shutdowns per year). Any change in this value could affect the startup ramp rate and hold times and hence the startup emissions.
- 6.) Startup/Shutdown times are subject to change depending on commercial terms and conditions.
- ESTIMATED NO_X emissions assume 92% SCR efficiency from ≥ 60% to Base load and 60% SCR efficiency from ≥ 50% to 60% load.
- 8.) ESTIMATED CO emissions assume 90% oxidation catalyst efficiency from > 25% to Base load, 80% efficiency from ≥ 20 to 25% load and 60% efficiency from ≥ 10 to 20% load.
- 9.) ESTIMATED VOC emissions assume 50% oxidation catalyst efficiency from ≥ 30% to Base load, 40% efficiency from > 25 to 30% load and 10% efficiency from ≥ 20 to 25% load.
- 10.) Emissions mass flow rates are based on ambient temperatures of 0 °F and 51 °F as noted above and will be higher at lower ambient temperatures.
- 11.) Air Cooled Condenser is ready for operation and condensate receiver tank is filled prior to GT startup.
- 12.) HRSG is filled and ready for operation prior to GT startup.
- 13.) Steam chemistry adequate for ST operation (no waiting time included).
- 14.) Assumes SWPC standard BOP water/steam system design and SWPC steam piping warm up concept.
- 15.) Major equipment items (GT/HRSG/ST) are operated at their startup ramp limits with no abnormal holds or transients.
- 16.) BOP/Auxiliary equipment operation does not extend startup or shutdown.
- 17.) Condenser Hogging: mechanical vacuum pumps; Condenser Holding: Steam Jet Air Ejectors
- 18.) Auxiliary boiler sized to supply pegging steam to HRSG and seal steam to ST.
- 19.) Stack damper to aid HRSG heat retention during shutdowns.
- 20.) Operator actions do not extend startup or shutdown.
- 21.) It is assumed that there is no restriction from the interconnected utility for loading the gas turbine from synchronization to 100% load within the time considered for the startups.

Siemens Westinghouse Power Corporation

A Siemens Company

Caithness - Bellport Energy Center - Total Estimated Startup and Shutdown Emissions W501FD Upgrade in Combined Cycle Operation on No. 2 Fuel Oil - With Aux. Boiler - With Stack Damper - Rev. 01

	Total Emissions (in pounds) @ 0 °F						
Mode	Ignition to Gas Turbine Base Load						
	NO _X	CO	VOC	PM			
"Cold" Startup	318	1,370	320	557			
"Warm" Startup	276	1,333	298	311			
"Hot" Startup	209	1,166	225	246			
Shutdown	120	654	125	113			

	Total Emissions (in pounds) @ 51 °F						
Mode	Ignition to Gas Turbine Base Load						
	NO _X	CO	VOC	PM			
"Cold" Startup	290	1,271	294	509			
"Warm" Startup	253	1,237	274	285			
"Hot" Startup	192	1,084	207	225			
Shutdown	110	608	115	104			

General Notes

1.) All data is ESTIMATED, NOT guaranteed and is for ONE unit (GT and HRSG).

- 2.) SCR efficiency is based on the SCR and ammonia vaporization system being in service and properly operating at design temperatures.
- 3.) VOC consist of total hydrocarbons excluding methane and ethane and is expressed in terms of methane (CH₄).
- 4.) Particulate (PM) emissions are based on USEPA Methods 5/202 and assume a max. fuel sulfur content of 0.35 gr S/100 scf.
- 5.) Gas fuel must be in compliance with the SWPC Fuel Specifications.
- 6.) Emissions are at the HRSG exhaust stack outlet and exclude ambient air contributions.
- 7.) Please be advised that the information contained in this transmittal has been prepared and is being transmitted per customer request specifically for information purposes only. Such information is not intended to be used for evaluation of plant design and/or performance relative to contractual commitments. Data included in any permit application or Environmental Impact Statement is strictly the customer's responsibility. SWPC is available to review permit application data upon request.

Startup / Shutdown Emissions Notes

- 1.) "Cold" Startup emissions estimates are based on being shutdown ~ 7 days or longer with a Steam HP/IP metal temp. of ~ 122 °F and assumes it takes ~ 300 minutes to reach GT Base load.
- "Warm" Startup emissions estimates are based on being shutdown ~ 48 hours with a Steam Turbine HP/IP metal temp. of ~ 320/428 °F and assumes it takes ~ 170 minutes to reach GT Base load.
- 3.) "Hot" Startup emissions estimates are based on being shutdown ~ 12 hours with a Steam Turbine HP/IP metal temp. of ~ 662 °F and assumes it takes ~ 135 minutes to reach GT Base load.
- 4.) Shutdown emissions based on the following times: 12 minutes from 100% Base to 70% load; 18-minute hold at 70% load; 28 minutes from 70% to minimum load; and a 5-minute hold at minimum load (FSNL) prior to fuel cut-off.
- 5.) Startup emissions estimates are based on a maximum of approximately 208 "Hot", 48 "Warm" and 4 "Cold" startups per year (and the subsequent 260 shutdowns per year). Any change in this value could affect the startup ramp rate and hold times and hence the startup emissions.
- 6.) Startup/Shutdown times are subject to change depending on commercial terms and conditions.
- ESTIMATED NO_X emissions assume 92% SCR efficiency from ≥ 60% to Base load and 60% SCR efficiency from ≥ 50% to 60% load.
- 8.) ESTIMATED CO emissions assume 90% oxidation catalyst efficiency from > 25% to Base load, 80% efficiency from ≥ 20 to 25% load and 60% efficiency from ≥ 10 to 20% load.
- 9.) ESTIMATED VOC emissions assume 50% oxidation catalyst efficiency from ≥ 30% to Base load, 40% efficiency from > 25 to 30% load and 10% efficiency from ≥ 20 to 25% load.
- 10.) Emissions mass flow rates are based on ambient temperatures of 0 °F and 51 °F as noted above and will be higher at lower ambient temperatures.
- 11.) Air Cooled Condenser is ready for operation and condensate receiver tank is filled prior to GT startup.
- 12.) HRSG is filled and ready for operation prior to GT startup.
- 13.) Steam chemistry adequate for ST operation (no waiting time included).
- 14.) Assumes SWPC standard BOP water/steam system design and SWPC steam piping warm up concept.
- 15.) Major equipment items (GT/HRSG/ST) are operated at their startup ramp limits with no abnormal holds or transients.
- 16.) BOP/Auxiliary equipment operation does not extend startup or shutdown.
- 17.) Condenser Hogging: mechanical vacuum pumps; Condenser Holding: Steam Jet Air Ejectors
- 18.) Auxiliary boiler sized to supply pegging steam to HRSG and seal steam to ST.
- 19.) Stack damper to aid HRSG heat retention during shutdowns.
- 20.) Operator actions do not extend startup or shutdown.
- 21.) It is assumed that there is no restriction from the interconnected utility for loading the gas turbine from synchronization to 100% load within the time considered for the startups.

Cleaver-Brooks Boiler Expected Steam Performance Data

- -

BACKGROUND INFORMATION		· · · · · · · · · · · · · · · · · · ·				
	40/44/04		A			
	12/14/04		* The data con	* The data contained in		
Author	L.C. Banks		the Firetube Pe	the Firetube Performance		
Customer	TRC-Caithness I	Bellport	Sheet is based	on the		
City & State	Long Island		condition outlin	ed in		
Boiler Model	CEW(LN)		Cleaver-Brooks	s document		
Design Pressure (psig)	150		CB 7767-Rev.	1		
Furnace Volume (cuft)	254.22		"Efficiency Fac	ts".		
Heating Surface (sqft)	3472					
	4400					
Steam Enthalpy, (Btu/Ibm)	1193	1193	1193	1193		
Feedwater Enthalpy, hfw (Btu/Ibm)	196	196	196	196		
LOAD						
Operating BHP	800	600	400	200		
Steam Flow Rate, (lbm/hr)	26,866	20,149	13,433	6,716		
Firing Rate	100%	75%	50%	259/		
	Notural Con	Netwol Con		25%		
Fuertype	Natural Gas	Natural Gas	Natural Gas	Natural Gas		
EXCESS AIR	•					
Excess Air Leaving Boiler	25.0%	25.0%	25.0%	25.0%		
O2 Leaving Boiler	4.5%	4.5%	4.5%	4.5%		
CO2 Leaving Boiler	9.2%	9.2%	9.2%	9.2%		
PRESSURE						
Steam Operating Pressure, (psig)	125	125	125	125		
TEMPERATURES		·				
Flue Gas Temp. Leaving Boiler (F)	427	414	400	386		
Feedwater Temperature, T fw (°F)	227	227	227	227		
Combustion Air Temperature (°F)	80	80	80	80		
Steam Temperature (°F)	353	353	353	353		
ENERGY	000			555		
Heat Output , (Btu/hr)	26,780,000	20.085.000	13,390,000	6,695,000		
HHV Fuel-to-Steam Efficiency (%)	81.73	81.97	82 12	81.86		
HHV Heat Input (Btu.hr)	32,765,980	24,501,785	16.306.184	8.178.752		

Cleaver-Brooks Boiler Expected Steam Performance Data

- -

BACKGROUND INFORMATION					
Date	12/14/04		* The data contained in		
Author	L.C. Banks		the Firetube Pe	rformance	
Customer	TRC-Caithness	Bellport	Sheet is based	on the	
City & State	Long Island		condition outlin	ed in	
Boiler Model	CEW(LN)		Cleaver-Brooks	document	
Design Pressure (psig)	150		CB 7767-Rev.	1	
Furnace Volume (cuft)	254		"Efficiency Fact	s".	
Heating Surface (sqft)	3472				
HEAT LOSS					
Dry Gas (%)	6.74	6.46	6.18	5.90	
H2 and H2O in Fuel (%)	11.14	11.08	11.02	10.96	
Moisture in Air (%)	0.09	0.08	0.08	0.08	
Radiation (%)	0.30	0.40	0.60	1.20	
Total Heat Loss (%)	18.27	18.03	17.88	18.14	
FLOW RATES					
Gas LHV (Btu/SCF)	903	903	903	903	
Gas HHV (Btu/SCF)	1,000	1,000	1,000	1,000	
HHV Gas Flow Rate (SCFH)	32,754	24,493	16,300	8,176	
Gas LHV (Btu/lbm)	19,088	19,088	19,088	19,088	
Gas HHV (Btu/lbm)	21,136	21,136	21,136	21,136	
Gas Flow Rate (Ibm/hr)	1,550	1,159	771	387	
Dry Air Weight (Ibm/Ibm fuel)	19.13	19.13	19.13	19.13	
Air for Combustion (Ibm/hr)	29,650	22,172	14,755	7,401	
Flue Gas to Stack (lbm/hr)	31,200	23,331	15,527	7,788	
RESISTANCE					
Furnace Pressure (in WC)	12.97	7.26	3.21	0.81	
Net Resistance (in WC)	12.97	7.26	3.21	0.81	
HEAT RELEASE					
Furnace Heat Release (Btu/hr/cuft)	128,888	96,380	64,142	32,172	
Furnace Heat Release Rate (Btu/hr/sqft)	112,986	84,489	56,228	28,203	
Heat Absorption Rate (Btu/hr/sqft)	7,713	5,785	3,857	1,928	

_

MODEL CEW-LN 200-800-150ST BOILER FIRING NATURAL GAS:

	NATURAL GAS								
	AVAILABLE NT								
	TECHNOLOGY	 		 		\rightarrow		r	
POLLUTANT	PPM Lbs/MMBtu								
	50								
co	0.04			L					
1	9								
Nox	0.011								
	0.3			1					
Sox	0.0005			<u> </u>	_			<u>.</u>	
-	15			Í				i	
HC/VOC	0.006	 		 					
	NA					1			
PM	0.0033							<u> </u>	
PPM LEVELS	ARE GIVEN ON A D	JME BA	SIS AN	RRECTE	D TO 3%	οχγα	3EN (15%	EXCESS A	NR)

Cleaver-Brooks Boiler Estimated Exhaust/Emission Performance Data

Boiler Summary Data

	Boiler Model: Fuel: Input, Btu/hr:	CEW-LN 200-80 No. 2 Oil 33,475,000	00 150#	Steam/Hot Wate Steam Pressure LE Option, ppm:	er: , psig:	Steam 125 9
		25%	Firin 50%	ng Rate 75%	100%	
	Horsepower Btu/hr	200 8,368,750	400 16,737,500	600 25,106,250	800 33,475,000	
<u>Emissio</u>	n Performance					
со	ppm Ib/MMBtu Ib/hr tpy	50 0.039 0.32 1.42	50 0.039 0.65 2.84	50 0.039 0.97 4.27	50 0.039 1.30 5.69	
NOx	ppm Ib/MMBtu Ib/hr tpy	75 0.10 0.84 3.7	75 0.10 1.67 7.3	75 0.10 2.51 11.0	75 0.10 3.35 14.7	
SOx	ppm Ib/MMBtu Ib/hr tpy	22 0.041 0.34 1.5	22 0.041 0.69 3.0	22 0.041 1.03 4.5	22 0.041 1.38 6.0	
HC/VOC	s ppm Ib/MMBtu Ib/hr tpy	60 0.03 0.251 1.10	60 0.03 0.502 2.20	60 0.03 0.753 3.30	60 0.03 1.004 4.40	
РМ	ppm Ib/MMBtu Ib/hr tpy	N/A 0.015 0.124 0.54	N/A 0.015 0.248 1.09	N/A 0.015 0.372 1.63	N/A 0.015 0.496 2.17	
<u>Exhaust</u>	Data					
Tempera	ature, F	365	375	414	427	
Flow	ACFM SCFM lb/hr	3,083 1,981 8,911	5,283 3,355 15,090	8,296 5,032 22,635	11,225 6,710 30,180	
Velocity	ft/sec ft/min	16.35 981.2	28.03 1681.8	44.01 2640.6	59.55 3573.1	

Notes: All ppm levels are corrected to 3% oxygen

 No. 2 Oil emission levels are based on the following fuel constituent levels:

 Ash Content
 0.001 %, by weight

 Fuel-bound Nitrogen Content
 0.015 %, by weight

 Sulfur Content
 0.04 %, by weight

 If any of the actual fuel constituent levels are different than indicated above, the emission levels will change.

Emissions Data: Fuel Gas Heater

Project Name:	North Bellport
Customer:	Caithness
Location:	Long Island, NY
Date:	July 15, 2004
Location: Date:	Long Island, NY July 15, 2004

Heater Summary Data

3.6	MMBtu/hr
3.516	MMBtu/hr
70	%
25	%
850	°F
24	in
18	ft
1000	Btu/SCF (HHV)
11.62	ft3/ft3
10.47	ft3/ft3
5,022.86	scfh
71,512.93	scfh
180,157.57	acfh (including excess air)
3.1134	ft ²
16.0738	ft/sec
	3.6 3.516 70 25 850 24 18 1000 11.62 10.47 5,022.86 71,512.93 180,157.57 3.1134 16.0738

Estimated Emissions Data PROVIDED BY SIEMENS WESTINGHOUSE

NOx b/hr 0.5022857 со lb/hr 0.4219200 тнс lb/hr 0.0552514 SO₂ lb/hr 0.0030137 lb/hr PM (filterable) 0.0095434 PM (condensable) lb/hr 0.0286303

NOx Emission Control Data CALCULATIONS BY TRC REFLECT REVISED SWPC NOX DATA FOR FORCED DRAFT BURNER

Fuel Comsumption:	4,357.00	scfh	listed in SWPC e-mail dated 10/18/2004
NOx	50	lb/mmscf	listed in SWPC e-mail dated 10/18/2004
NOx (with control)	0.218	lb/hr	calculated / no margin added
Accuracy (control)	15%		listed in SWPC e-mail dated 10/18/2004
NOx (with control)	0.251	lb/hr	calculated (includes margin for +/- 15% accuracy)
NOx (with control)	0.050	lb/mmbtu	calculated (includes margin for +/- 15% accuracy)

Notes and Assumptions: 1. All data is ESTIMATED, NOT guaranteed and is for ONE unit. 2. Stack height and diameter subject to change. 3. Corrections may be required based on site or ambient conditions.

A. Data is subject to change on final vendor selection.
A. Data is subject to change on final vendor selection.
SO₂ based on 0.2 gr HS / 100 scf of fuel.
E. Equipment sizing is subject to change based on final plant requirements.
7. Please be advised that the information contained in this transmittal has been prepared and is being transmitted per customer request specifically for information purposes only. Such information is not intended to be used for evaluation of plant desig

Emissions Data: 275 Hp Fire Pump Engine

Project Name:	North Bellport
Customer:	Caithness
Location:	Long Island, NY
Date:	July 15, 2004

Fire Pump Engine Data

Fuel:	Diesel Oil		Cylinders:	6
Power:	275	Нр	Cycle:	4
			Emissions:	Lean Burn

Estimated Operating Data

RPM	1470	1760	2100	2350
BHP	220	265	275	275
Fuel, gph	13.2	14.2	14.8	16.0
Air / Fuel Ratio	20.01	26.31	31.76	34.44

Estimated Emissions Data

NOx	grams/Hp/hr	6.7	6.7	6.0	6.0
СО	grams/Hp/hr	0.29	0.29	0.28	0.28
HC	grams/Hp/hr	0.32	0.23	0.28	0.28
SO ₂	grams/Hp/hr	0.18	0.17	0.15	0.09
PM	grams/Hp/hr	0.07	0.07	0.08	0.08
0 ₂	%	5.8	9.5	10.7	12.4

Estimated Exhaust Data

Temperature	°F	990	840	750	737
Flow	CFM	1107	1404	1644	1908
Time Retard	degrees	9.3	9.3	9.3	9.3

Notes and Assumptions:

- 1. HC is a measure of total hydrocarbons, inclusing Non Methane Hydrocarbons (NMHC)
- 2. PM is a measure of total particulates, including PM_{10} .
- 3. Sulfur Dioxide based on 0.05% sulfer content in fuel (by weight).
- 4. All data is ESTIMATED, NOT guaranteed and is for ONE unit.
- 5. Corrections may be required based on site or ambient conditions.
- 6. Data is subject to change based on final vendor selection.
- 7. Data valid for fuels meeting the vendor fuel criteria.
- 8. Equipment sizing is subject to change based on final plant requirements.

9. Please be advised that the information contained in this transmittal has been prepared and is being transmitted per customer request specifically for information purposes only. Such information is not intended to be used for evaluation of plant desi

Emissions Data: 300 Hp Fire Pump Engine

Project Name:	North Bellport	
Customer:	Caithness	
Location:	Long Island, NY	
Date:	July 15, 2004	

Fire Pump Engine Data

Fuel:	Diesel Oil		Cylinders:	6
Power:	275	Нр	Cycle:	4
			Emissions:	Lean Burn

Estimated Operating Data

RPM	1470	1760	2100	2350
ВНР	240	290	300	300
Fuel, gph	13.0	13.5	14.2	14.5
Air / Fuel Ratio	22.79	29.35	34.47	40.97

Estimated Emissions Data

NOx	grams/Hp/hr	5.6	5.7	5.2	5.2
СО	grams/Hp/hr	0.24	0.25	0.27	0.27
HC	grams/Hp/hr	0.1	0.08	0.15	0.15
SO ₂	grams/Hp/hr	0.17	0.14	0.14	0.15
РМ	grams/Hp/hr	0.07	0.07	0.09	0.09
02	%	7.6	10.8	12.3	13.6

Estimated Exhaust Data

Temperature	°F	1030	855	770	738
Flow	CFM	1276	1506	1740	2058
Time Retard	degrees	9.7	9.7	9.7	9.7

Notes and Assumptions:

- 1. HC is a measure of total hydrocarbons, inclusing Non Methane Hydrocarbons (NMHC)
- 2. PM is a measure of total particulates, including PM_{10} .
- 3. Sulfur Dioxide based on 0.05% sulfer content in fuel (by weight).
- 4. All data is ESTIMATED, NOT guaranteed and is for ONE unit.
- 5. Corrections may be required based on site or ambient conditions.
- 6. Data is subject to change based on final vendor selection.
- 7. Data valid for fuels meeting the vendor fuel criteria.
- 8. Equipment sizing is subject to change based on final plant requirements.

9. Please be advised that the information contained in this transmittal has been prepared and is being transmitted per customer request specifically for information purposes only. Such information is not intended to be used for evaluation of plant desi